POSITION: HOME » ENGLISH » STAFF » Professor »

Prof. Tingjun Zhang

Font: Large Medium Small

 

MOE Key Laboratory of Western China’s Environmental Systems

Research School of Arid Environment and Climate Change

Lanzhou University

222 South Tianshui Road, Lanzhou

730000, Gansu Province,CHINA

Phone: 

Fax:       +86 931 891 2330

Email:     tjzhang@lzu.edu.cn

 

vEDUCATION

Ph.D. in Geophysics, Geophyiscal Institute, University of Alaska Fairbanks, 1993

M.S. in Geophysics, Geophysical Institute, University of Alaska Fairbanks, 1989

M.S. in Physical Geography, Lanzhou Institute of Glaciology and Geocryology, 1984

B.S. in Physical Geography, Lanzhou University, P.R.China, 1980

 

vPROFESSIONAL EXPERIENCE

Fellow, Cooperative Institute for Research in Environmnetal Sciences (CIRES), University of Colorado at Boulder, April, 2008 – present.

Senior Research Scientist, National Snow and Ice Data Center/CIRES, University of Colorado at Boulder, August, 2006 - present.

Research Scientist III, National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, April, 2001- August, 2006.

Research Scientist II, National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Dec. 1996 - April, 2001.

Research Associate, Geophysical Institute, University of Alaska Fairbanks, Jul. 1995 - Nov. 1996.

Post-Doctoral fellow, Geophysical Institute, University of Alaska Fairbanks, Sep. 1993 - Jun. 1995.

Research Assistant, Geophysical Institute, University of Alaska Fairbanks, Jan. 1987 - Aug. 1993.

Research Associate, Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences, P. R. China, Jan. 1985 - Dec. 1986.

Research Assistant, Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences, P. R. China, Jan. 1980 - Dec. 1984.

 

vRESEARCH INTERESTS

Climate and climate change;  

cold regions environments; land surface processes; snow, ice, and frozen (permafrost and seasonally frozen ground); soil temperature and moisture; heat and mass transfer in porous media; interactions and feedbacks between changes in frozen ground/snow cover and hydrological/carbon cycles; numerical modeling of geophysical phenomena and comparison with measurements; application of satellite remote sensing data to study on snow, near-surface soil freeze/thaw status, and northern phenomena; field and laboratory experiments.

 

vTEACHING & SUPERVISION

Prof. Zhang has extensive experiences of teaching and supervising undergraduate and graduate students, post-docs, young scientists, and research groups and teams.

 

vEXTERNAL ACTIVETIES

 PROFESSIONAL ACTIVITIES AND ORGANIZATIONS:

Lead Author, IPCC 5th Assessment Report, Working Group I, representing USA/China, May, 2010 – April, 2014.

Associate Editor of Journal of Geophysical Research – Earth Surface, American Geophysical Union, Nov. 2009 – present.

Editor of The Cryosphere, European Geophysical Union, March, 2007 – present

Visiting Scientist (adjount), Chinese Academy of Meteorological Science, China Meteorological Administration (CMA), Beijing, China, Dec. 2005 – 2008.  

Representative for the IUGG Commission for Cryospheric Science to the First Asian Conference on Permafrost, August, 2005 – October, 2006.

Member of the International Council for Science (ICSU) World Data Center (WDC) Review Panel, March – September, 2005.

Lead Author, IPCC Fourth Assessment Report on “Changes in Snow, Ice, and Frozen Ground”, representing USA/China, July, 2004 --- 2007

Director (adjount), Institute of Plateau Meteorology (IPM), China Meteorological Adminstration (CMA), Chengdu, China, August, 2002 – Nov. 2005.

Member, Editorial Board of Directors, Cold Regions Science and Technology, 2001-present.

Member, Editorial Board of the Journal of Glaciology and Geocryology, China Society of Glaciology and Geocryology, March, 2000 --- present

Memberships: American Meteorological Society (1999 - present); American Geophysical Union (1989 - present); Association of American Geographers (1993 - present); International Glaciological Society (1999 - present).  

HONORS:

Group Achievement Award, awarded by the National Aeronautics and Space Administration to the EOSDIS Data Centers Customer Support Team which I was a member for more than 10 years, Washington, DC, April 27, 2006.

Nobel Peace Prize, 2007, Awarded by the Nobel Peace Prize Committee to the Intergovernmental Panel on Climate Chang (IPCC), Prof. Zhang was a lead author for IPCC Fourth Assessment Report, Working Group I, Dec. 10, 2007.

2007 ASLI Choice Award by the Atmopsheric Science Librarians International to Climate Change 2007 – The Physical Science Basis by the Intergovernmental Panel on Climate Change Working Group I, Scientific and Technical Category for high impact comprehensive publication, Prof. Zhang was a lead author for IPCC Working Group I, Assessment Report 4 from 2005-2007.

Most cited paper published in Polar Geography: The article by Zhang et al. (1999) was selected as one of five most cited papers published in Polar Geography in the past 30 years. Jan., 2008.

Reviewers Award, the Elsevier, Cold Regions Science & Technology, December, 2008.

Outstanding Oversea Chinese Scientist, 2009: Invited to attend the 60th National Day Parade of the People’s Republic of China and related activities by the Chinese Central Government, Beijing, China, Sept. 30 – Oct 3, 2009.  

KEYNOTE AND INVITED PRESENTATIONS

Keynote Speech at the 8th International Symposium on Permafrost Engineering, title: “Permafrost Degradation across Eurasian Continent and its Engineering Implications”, Xi’An, China, Oct. 14 – 17, 2009.

Invited presentation at the 5th International Symposium of Tibetan Plateau, title “Climate and Permafrost Interaction on the Tibetan Plateau”, Beijing, China, August 11 – 14, 2009.

Invited presentation at the 2008 Fall AGU Meeting, title: “Climate, Permafrost, and Landscape Interactions on the Tibetan Plateau”, San Francisco, CA, Dec 15-19, 2008.

Invited Seminar at the State Key Laboratory of Frozen Soil Engineering, Chinese Academy of Sciences, Oct. 6, 2008, Lanzhou, China, Title: “The World Has Warmed and Cold Regions Become ‘Hot’ ”.

Keynote Speech, The 2nd Scientific Symposium of Qinghai-Tibetan Plateau Permafrost Investigation, Sept. 20, 2008, State Key Laboratory of Cryospheric Science, Chinese Academy of Sciences, Lanzhou, China, Title: “Perspectives of Frozen Ground Studies in a Warming Climate.”

Briefing to the Italian Delegation led by Sen. Francesco Rutelli, Deputy Prime Minister of Italy and former Mayor of Rome on climate change, Boulder, Colorado, August 26, 2008. Title: “Permafrost degradation and its Environmental Impact in the Arctic”.

Keynote Speech at the May 2008 Asian American Pecific Islander Heritage Month, Denver, Colorado, May 28, 2008. Title: “The World Has Warmed and the Arctic Becomes Hot”.

Briefing to the United States Arctic Research Commission (USARC), Boulder, Colorado, March 13, 2008. Title: “Permafrost Degradtion in the Arctic”.

Arctic Visitor Speaker, 2007: Invited by the Arctic Research Consortium of the United States (ARCUS) to give a series of lectures in Fairbanks, Alaska, from Feb. 18 – 23, 2007. Total of six lectures were given to Arctic research community, general public, college and graduate students at the University of Alaska Fairbanks, and University Park Elementary School, covering a variety of resaech topics related with permafrost and snow cover.

 

vSELECTED PUBLICATIONS

Yang, Xingguo, Tingjun Zhang, Qin Dahe, Kang Shichang, Qin Xiang, and Liu Hongyi: Seasonal Characteristics of Surface Meteorological and Radiative Fluxes on the East Rongbuk Glacier in the Mt. Qomolangma (Mt. Everest) Region, J. Geophys. Res., (accepted).  

Wu, Qingbai, Tingjun Zhang, and Y. Liu: Permafrost temperatures and thickness on the Qinghai Tibetan Plateau, (accepted).

Schaefer, K., Tingjun Zhang, A. G. Slater, L. Lu, A. Etringer, and I. Baker, Improving simulated soil temperatures and soil freeze/thaw at high latitude regions in the SiBCASA model, J. Geophys. Res., (accepted).

Ma, L., T. Zhang, O. W. Frauenfeld, B. Ye, D. Yang, and D. Qin (2009), Evaluation of precipitation from the ERA-40,NCEP-1, and NCEP-2 Reanalyses and CMAP-1, CMAP-2, and GPCP-2 with ground-based measurements in China, J. Geophys. Res., 114, D09105, doi:10.1029/2008JD011178.

Zhang, Tingjun, Rui Jin, and Feng Gao. Overview of satellite remote sensing of surface soil freezing and thawing, I: Visible and active microwave sensors, Journal of Remote Sensing and Environments, (accepted).

Zhang, Tingjun, Rui Jin, and Feng Gao, Overview of satellite remote sensing of surface soil freezing and thawing, II: Passive microwave sensors, Journal of Remote Sensing and Environments, (accepted).

Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A. and Brown, J. (2008): 'Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere', Polar Geography,31:1,47 – 68.

Wu, Q., and Tingjun Zhang (2008), Recent permafrost warming on the Qinghai-Tibetan Plateau, J. Geophys. Res., 113, D13108, doi:10.1029/2007JD009539.

Ma, Lijuan, Tingjun Zhang, Qingxiang Li, O. W. Frauenfeld, and Dahe Qing (2008). Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based measurements in China, J. Geophys. Res., 113, D15115, doi:10.1029/2007JD009549

Wu, Q., Zijian Lu, Tingjun Zhang, Wei Ma, and Yongzhi Liu (2008): Analysis of cooling effect of crushed rock embankment of the Qinghai-Xizang Railway, Cold Regions Science and Technology, 53(3), 271-282.

Zhang, Tingjun, Barry Baker, and Guodong Cheng (2008), Qinghai-Xizang Railway – A new milestone project in permafrost regions, Cold Regions Science and Technology, 53(3), 229-240.

Che, Tao, Xin Li, Rui Jin, Richard Armstrong, and Tingjun Zhang (2008), Snow depth derived from passive microwave remote-sensing data in China, Annals of Glaciology, 49, 145-154.

Zhang, Tingjun and Daqing Yang (2008), Tribute: A Legendary Glaciologist: Academician Shi Yafeng on his Ninetieth Birthday, Arctic, Antarctic, and Alpine Research, DOI: 10.1657/1523-0430(2008-1), [TRIBUTE] 2.0.CO; 2

Bojariu, R.; Garcia-Herrera, R.; Gimeno, L.; Zhang, T.; Frauenfeld, O. W., 2008: Cryosphere-atmosphere interaction related to NAO variability and change. In Trends and Directions in Climate Research: Ann. N.Y. Acad. Sci. 1146: 50–59 (2008). doi: 10.1196/annals.1446.018 C _ 2008 New York Academy of Sciences.

Parsons, M. A.; Smith, S. L.; Romanovsky, V. E.; Shiklomanov, N. I.; Christiansen, H. H.; Overduin, P. P.; Zhang, T.; Balks, M. R.; Brown J.; 2008: Managing Permafrost Data: Past Approaches and Future Directions. Proc. Ninth International Conference on Permafrost, 2(6), 1369–1374.

PaiMazumder, D., J. Miller, Z. Li, J. E. Walsh, A. Etringer, J. McCreight, T. Zhang, and N. Molders, Evaluation of Community Climate System Model soil temperatures using observations from Russia, Theor. Appl. Climatol. (2008), doi: 10.1007/s00704-007-0350-0.

White, D., Larry Hinzman, Lilian Alessa, John Cassano, Molly Chambers, Kelly Falkner, Jennifer Francis, William J. Gutowski Jr., Marika Holland, R. Max Holmes, Henry Huntington, Douglas Kane, Andrew Kliskey, Craig Lee, James McClelland, Bruce Peterson, T. Scott Rupp, Fiamma Straneo, Michael Steele, Rebecca Woodgate, Daqing Yang, Kenji Yoshikawa, and Tingjun ZhangThe arctic freshwater system: Changes and impacts, J. Geophys. Res., 112, G04S54, doi:10.1029/2006JG000353.

Fan, G., Tingjun Zhang, Jinjun Ji, Kerang Li, and Jiyuan Liu, 2007: Numerical simulation of the carbon cycle over the Tibetan Plateau, China, Arctic, Antarctic, and Alpine Research, 39(4), 723-732.

[22]. Lemke, P., J. Ren, R.B. Alley, I Allison, J. Carrasco, G. Flato, Y. Fujii, G. Kaser, P. Mote, R.H. Thomas and T. Zhang, 2007: Observations: Changes in Snow, Ice and Frozen Ground. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Scheafer, K., T. Zhang, P. Tans, and R. Stockli, Soil temperature reemergence in seasonally frozen ground regions, J. Geophysi. Res., 112, D20102, doi:10.1029/2007JD008630.  

Ling, F. and T. Zhang, Modeled impacts of changes in tundra snow thickness on ground thermal regime and heat flow to the atmosphere in Northernmost Alaska, Global and Planetary Change, 57(2007), 235-246.

Anisimov, O.A., V. Lobanov, S. Reneva, N. Shiklomanov, T. Zhang, and F. Nelson (2007), Uncertainties in gridded air temperature fields and effects on predictive active layer modeling, J. Geophys. Res., 112, F02S14, doi:10.1029/2006JF000593.

Zhang, T., F. Nelson, and S. Gruber (2007), Introduction to Special Section: Permafrost and seasonally frozen ground under a changing climate, J. Geophys. Res., 112, F02S01, doi:10.1029/2007JF000821. 

Oelke, C. and T. Zhang, 2007: Modeling the soil thermal regime of the Tibetan Plateau, Arctic, Antarctic, and Alpine Reseaerch, 39(4), 714-722.

Saito, K., M. Kimoto, T. Zhang, K. Takata, S. Emori (2007), Changes in hydro-thermal regimes in frozen ground regions under global warming scenarios simulated by a high-resolution climate model, J. Geophys. Res., 112, F02S11, doi:10.1029/2006JF000577.

Shiklomanov, N. I., O. A. Anisimov, T. Zhang, S. Marchenko, F. Nelson, and C. Oelke (2007), Analysis of model-produced permafrost active layer fields: Results for northern Alaska, J. Geophys. Res., 112, F02S10, doi:10.1029/2006JF000571.

Zhang, T., 2007: Perspectives on environmental study of response to climatic and land use and land cover change over the Qinghai-Tibetan Plateau: An introduction, Arctic, Antarctic, and Alpine Research, 39(4), 631-634.

Duo Chu, Lixin Lu, and T. Zhang, 2007: Sensitivity of NDVI to Seasonal and Inter-annual Climate Conditions in Lhasa area, Tibetan Plateau, Arctic, Antarctic, and Alpine Research 39(4), 635-641.

Frauenfeld, Oliver W., T. Zhang, and James McCreight, 2006. Climatology and variability of Northern Hemisphere Freezing/Thing Index in the 20th Century, International Journal of Climatology, 27(1), 47-63, doi:10.1002/joc.1372.

Chudinova, S. M., O. W. Frauenfeld, R. G. Barry, T. Zhang, and V. A. Sorokvikov, 2006. Relationship between air and soil temperature trends and periodicities in the permafrost regions of Russia, J. Geophys. Res.,  111, F02008, doi:10.1029/2005JF00342.

Ling, F. and T. Zhang, 2006: Sensitivity of ground thermal regime and surface energy fluxes to tundra snow density in northern Alaska, Cold Regions Science and Technology, 42(2), 121-130. 

Zhang, T., 2005. Influence of the seasonal snow cover on the ground thermal regime: An overview, Reviews of Geophysics, 43, RG4002, doi:10.1029/2004RG000157.

Zhang, T., O. W. Frauenfeld, M. C. Serreze, A. Etringer, C. Oelke, J. McCreight, R. G. Barry, D. Gilichinsky, D. Yang, H. Ye, F. Ling, and S. Chudinova, 2005: Spatial and temporal variability of active layer thickness over the Russian Arctic drainage basin, J. Geophys. Res., 110, D16101, doi:10.1029/2004JD005642. 

Duguay, C. R., T. Zhang, D. W. Leverington, and V. E. Romanovsky, 2005: Satellite remote sensing of permafrost and seasonally frozen ground, in Remote Sensing in Northern Hydrology, edited by Duguay, C. R. and A. Pietroniro, Geophysical Monograph 163, American Geophysical Union, Washington, D.C., pp. 91-118.

Ling, F. and T. Zhang, 2005: Modeling the effect of variations in snowpack-disappearance date on surface-energy balance on the Alaksan North Slope, Arctic, Antarctic, and Alpine Research, 37(4), 483-489.

Zhang, T., 2005. Historical Overview of permafrost studies in China, Physical Geography, 26(4), 279-298.

Frauenfeld, O. W., T. Zhang, and M. C. Serreze (2005), Climate change and variability using European Center for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau, J. Geophys. Res., 110, D02101, doi:10.1029/2004JD005230.

Li, Chuan, Tingjun Zhang, and Jing Chen, 2004. Climate change in the past 40 years over the Qinghai-Tibetan Plateau – comparison studies of ERA-40 and NCEP reanalysis data with ground-based measurements, Plateau Meteorology, 23, 97-103, (in Chinese with English abstract).

Zhang, T., Roger G. Barry, and Richard L. Armstrong, 2004. Application of Satellite Remote Sensing on Frozen Ground Studies, Polar Geography, 28(3), 193-196.

Oelke, C., T. Zhang, and M. C. Serreze, 2004: Modeling evidence for recent warming of the Arctic soil thermal regime, Geophysics Research Letters, 31, L07208, doi:10.1029/2003GL019300, 2004.

Frauenfeld, O., T. Zhang, Roger G. Barry, and David G. Gilichinsky, Interdecadal changes in seasonal freeze and thaw depths in Russia, J. Geophys. Res, 109, D05101, doi:10.1029/2003JD004245, 2004.

Ye, Hengchun, D. Yang, T. Zhang, X. Zhang, and S. Ladochy, and M. Ellison, The impact of climatic condition on seasonal river discharges in Siberia, Journal of Hydrometeorlogy, 5, 286-295, 2004.

Ling, F. and T. Zhang, A surface energy balance approach based finite difference model for thermal regime of permafrost containing unfrozen water, Cold Regions Science and Technology, 38(1), 1-15, 2004.

Oelke, Christoph and T. Zhang: A model study of circum-arctic soil temperatures, Permafrost and Periglacial Processes, 2004.

Ling, F. and T. Zhang, Numerical simulation of talik freeze-up and permafrost response under drained thaw lakes on the Alaksan Arctic Coastal Plain, J. Geophys. Res., 109, D01111, doi:/10.1029/2003JD3886, 2004.

Zhang, T., R. L. Armstrong, and Jeff. Smith, 2003. Investigation of the near-surface soil freeze/thaw cycle in the contiguous United States: Algorithm development and validation, J. Geophys. Res., 108(D22), 8860, doi:10.1029/2003JD003530, 2003.

Ye, Hengchun, D. Yang, X. Zhang, and T. Zhang: Connections of Yenisei River discharge to sea surface temperatures, sea ice, and atmospheric circulation, Journal of Geophysical Research – Atmosphere, 108(D24), 4776, doi:10.1029/2003ID003759, 2003..

Ling, F. and T. Zhang, 2003. Impact of the timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan Arctic, Permafrost and Periglaical Processes, 14, 141-150.

Ling, F. and T. Zhang, 2003. Numerical simulation of permafrost thermal regime and talik formation under shallow thaw lakes in the Alaskan Arctic, J. Geophys. Res., 108(D16), 4511, doi:10.1029/2002JD003014, 2003.

Oelke, Christoph, T. Zhang, Mark Serreze, and Richard Armstrong, 2003. Regional-scale modeling of soil freeze/thaw over the Arctic drainage basin, J. Geophys. Res., 108(D10), 4314, doi:10.1029/2002JD002722.

Zhang, T., T. Scambos, T. Haran, L. D. Hinzman, R. G. Barry, and D. L. Kane, 2003. Ground-based and satellite-derived measurements of surface albedo on the North Slope of Alaska, USA, J. Hydrometeorology, 4(1), 77-91.

Yang, Daqing,  Douglas L. Kane,  Larry D. Hinzman, Xuebin Zhang, Tingjun Zhang, and Hengchun Ye, 2003. Siberian Lena River Hydrologic Regime and Recent Change, J. Geophys. Res., 107(D23), 4694, doi:10.1029/2002JD002542.

Zhang, T., R.G. Barry, K. Knowles, F. Ling, and R.L. Armstrong, 2003. Distribution of seasonally and perenially frozen ground in the Northern Hemisphere, Proceedings of the 8th International Conference on Permafrost, M. Phillips, S. M. Springman, and L. U. Arenson, eds., Zurich, Switzerland, July 21-25, 2003, A. A. Balkema Publishers. Vol. 2, 1289-1294.

Serreze, Mark C., David H. Bromwich, Martyn P. Clark, Andrew J. Etringer, T. Zhang, and Richard Lammers, 2003. The large-scale hydro-climatology of the terrestrial Arctic drainage system, J. Geophys. Res., 107, 816, doi:10.1029/2001JD.000919-1, 2003.

Zhang, T., A major milestone of permafrost study in China: review of “Geocryology in China”, Journal of Glacology and Geocryology, 12(4), 375-385, 2002.

Zhang, T., 2002. Frozen ground study in China: a review, Journal of Glaciology and Geocryology, 12(4), 345-350.

Ling, F. and T. Zhang, 2002. A two-dimensional heat transfer model for atmosphere-land system in the lake-dominated Alaskan North Slope, Journal of Xijiang University, 22:1-7

Zhang, T., Roger G. Barry, and W. Haeberli, 2001. Numerical simulations of the influence of the seasonal snow cover on the occurrence of permafrost, Norwegian Journal of Geography, 55(4), 261-266.

Zhang, T., Roger G. Barry, D. Gilichinsky, S. S. Bykhovets, V. A. Sorokovikov, and Jingping Ye, 2001. An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia, Climatic Change, 49, 1-2, 41-76.

Zhang, T., K. Stamnes, and Sue Ann Bowling, 2001. Impact of the atmospheric thickness on the atmospheric downwelling longwave radiation during snowmelt in the Arctic and Subarctic. J. Climate, 14(5), 920-939.

Zhang, T. and R. L. Armstrong, 2001. Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing, Geophysical Research Letters, 28(5), 763-766.

Gilichinsky, D.A., S.S. Bykhovets, V.A. Sorokovikov, D.G. Fedorov-Davydov, R.G. Barry, T. Zhang, M.K. Gavrilova, O.I. Alexeeva, 2000. Use of the data of hydrometeorological survey for century history of soil temperature trends in the seasonally frozen and permafrost areas of Russia, Kriosfera Zemli (The Earth Cryosphere), 4(3), 59-66. (in Russian with English abstract).

Zhang, T., J. A. Heginbottom, Roger G. Barry, and J. Brown, 2000. Further statistics on the distribution of permafrost and ground-ice in the Northern Hemipshere, Polar Geography, 24(2), 126-131.

Zhang, T. and M. O. Jeffries, 2000. Modeling inter-decadal variations of lake ice thickness and sensitivity to climatic change in northernmost Alaska, Annals of Glaciology, 31, 339-347.

Liu, F., J. Sun, T. Zhang, and G. Cheng, Characteristics of surface radiative fluxes and cloud-radiative forcing with a focus on the Arctic, J. of Glaciology and Geocryology (English version), 22(4), 2000, 384-390.

Serreze, M.C., J.E. Walsh, F.S. Chapin, T. Osterkamp, M. Dyurgerov, V. Romanovsky, W.C. Oechel, J. Morison, T. Zhang, and R. Barry, 1999. Observational evidence of recent change in the northern high-latitude environment, Climatic Change, 46, 159-207.

Gilichinsky, D. A., S. S. Bykhovets, V. A. Sorokovikov, D. G. Fedorov-Davydov, R. G. Barry, T. Zhang, M. K. Gavrilova, and O. I. Alexeeva, 2000. Use of the data of hydrometeorological survey for century history of soil temperature trends in the seasonally frozen and permafrost areas of Russia, The Earth Cryosphere, 4(3), 59-66. (in Russian).

Zhang, T., Roger G. Barry, K. Knowles, J. A. Heginbottom, and J. Brown, 1999. Statistics and characteristics of permafrost and ground ice distribution in the Northern Hemisphere, Polar Geography, 23(2), 147-169.

Jeffries, M, O., T. Zhang, K. Krey, and N. Kozlenko, 1999: Conductive heat flux through the snow cover on lakes and tundra in late winter on the Alaskan North Slope, Journal of Glaciology,.45(150), 315-324.

Gilichinsky, D.A., R.G. Barry, S.S. Bykhovets, V.A. Sorokovikov, T. Zhang, S.L. Zudin, and D.G. Fedorov-Davydov, 1998: A century of temperature observations of soil climate: methods of analysis and long-term trends, in Proceedings of the 7th International Conference on Permafrost, Yellowknife, Canada, June 22-27, 1998, p. 313-317.

Zhang, T., 1998: Climate and permafrost conditions in northern Alaska, USA, The Earth Geocryosphere, The Russian Academy of Sciences, Siberian Branch, 2(1): 19-27, (in Russian with English abstract).

Zhang, T. and K. Stamnes, 1998. Impact of climatic factors on the active layer and permafrost at Barrow, Alaska, Permafrost and Periglacial Processes, 9(3), 229-246.

Zhang, T., T. E. Osterkamp, and K. Stamnes, 1997. Effects of climate on the active layer and permafrost on the North Slope of Alaska, Permafrost and Periglacial Processes, 8(1): 45-67.

Zhang, T., S. A. Bowling, and K. Stamnes, 1997. Impact of the atmosphere on the surface radiative fluxes and snowmelt in the Arctic and Subarctic, J. Geophys. Res., 102 (D4), 4,287-4,302.

Zhang, T., T. E. Osterkamp, and K. Stamnes, 1996. Some characteristics of the climate in northern Alaska, Arctic and Alpine Research, 28(4), 509-518.

Zhang, T., K. Stamnes, and S. A. Bowling, 1996. Impact of clouds on surface radiative fluxes and snowmelt in the Arctic and Subarctic, J. of Climate, 9(9), 2,110-2,123.

Zhang, T., T. E. Osterkamp, and K. Stamnes, 1996. Influence of the depth hoar layer of the seasonal snow cover on the ground thermal regime, Water Resources Research, 32(7), 2,075-2,086.

Zhang, T. and T. E. Osterkamp, 1995. Considerations in determining thermal diffusivity from temperature time series using numerical methods, Cold Regions Science and Technology, 23, 333-341.

Zhang, T., 1995. Impact of the depth hoar layer of snowpack on the ground thermal regime, in Proceedings of the 1995 International Mechanical Engineering Congress and Exposition, San Francisco, paper No. 95-WA/HT-47.

Osterkamp, T. E., T. Zhang, and V. E. Romanovsky, 1994. Evidence for a cyclic variation of permafrost temperatures in northern Alaska, Permafrost and Periglacial Processes, 5(3), 137-144.

Zhang, T. and T. E. Osterkamp, 1993. Changing climate and permafrost temperatures in the Alaskan Arctic, in Proceedings of the 6th International Conference on Permafrost, Beijing, China, July 5-9, 1993, South China University of Technology Press, Vol. 1, 783-788.

Zhang, T., T. E. Osterkamp, and J. Gosink, 1991. A model for the thermal regime of permafrost within the depth of annual temperature variations, in Proceedings of the 3rd International Symposium on Cold Regions Heat Transfer, June 11-14, 1991, Fairbanks, Alaska, University of Alaska Fairbanks, 341-347.

Wang, S. and T. Zhang, 1989. Periglacial phenomena along Qinghai-Xizang Highway of the Kunlun mountainous regions, Mountain Research, 7(3), 139-147.

Wang, S., P. Wang, and T. Zhang, 1989. Applications of environmental isotope tritium to research into ground ice in permafrost regions of the Qinghai-Xizang Plateau, J. of Glaciol. and Geocryology, 11(1), 58-67.

Zhang, T. and S. Wang, 1987. Approach to some problems on periglacial processes in the continental climate, J. of Glaciol. and Geocryol., 9(4), 318-327.

Tong, B., S. Li, and T. Zhang, 1986. Frozen ground in the Altai Mountains of China, J. of Glaciol. and Geocryol., 8(4), 357-364.

Li, S., B. Tong, and T. Zhang, 1985. Periglacial phenomena in the Altai Mountains of China, J. of Glaciol. and Geocryol., 7(1), 51-56.

Zhang, T., B. Tong, and S. Li, 1985. Influence of snow cover on the lower limit of permafrost in the Altai Mountains, J. of Glaciol. and Geocryol., 7(1), 57-64.

Tong, B., S. Li, T. Zhang, and Y. He, 1983. Frozen ground in the Altai Mountains of China, in Proceedings of the 4th International Conference on Permafrost, July 17-22, 1983, Fairbanks, Alaska, National Academy Press, Washington, D.C., Vol. 1, 1,267-1,272.

Zhang, W. and T. Zhang, 1982. Polygonal soil along the Highway between Qinghai-Xizang (Tibet), J. of Glaciol. and Geocryol., 4(3), 80-89.